三角函数图像与性质 知识点归纳总结

2024-10-13 15:04

三角函数是数学中常见的一类关于角度的函数,通常以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。三角函数在研究三角形和圆等几何形状的性质时具有重要作用,同时也是研究周期性现象的基础数学工具。

三角函数图像和性质

三角函数是数学中的基本初等函数之一,具有独特的图像和性质。以下是对三角函数图像与性质的详细分析:

一、三角函数图像

正弦函数y=sinx

图像特征:正弦函数的图像是一个周期性的波形,它在每个周期内有一个波峰和一个波谷,波峰和波谷的纵坐标分别为1和-1。

对称性:正弦函数图像关于原点对称,也关于直线x=kπ+π/2(k∈Z)对称。

余弦函数y=cosx

图像特征:余弦函数的图像也是一个周期性的波形,与正弦函数图像相似,但相位不同。余弦函数在每个周期内也有一个波峰和一个波谷,但波峰和波谷的纵坐标分别为1和-1,且波峰出现在x=2kπ(k∈Z)处。

对称性:余弦函数图像关于y轴对称,也关于直线x=kπ(k∈Z)对称。

正切函数y=tanx

图像特征:正切函数的图像在每一个周期内,从每一个形如(kπ,0)(k∈Z)的点开始,并伸向无穷远。正切函数的图像在x=kπ+π/2(k∈Z)处有间断点,即不存在。

对称性:正切函数图像关于原点对称,但无其他对称轴。

二、三角函数性质

周期性

正弦函数和余弦函数的周期为2π,即它们的值在每隔2π的角度后重复出现。

正切函数的周期为π,即它的值在每隔π的角度后重复出现。

奇偶性

正弦函数是奇函数,即sin(-x)=-sinx。

余弦函数是偶函数,即cos(-x)=cosx。

正切函数也是奇函数,即tan(-x)=-tanx。

有界性

正弦函数和余弦函数的值域都是[-1,1],即它们的值始终在这个范围内。

正切函数的值域是实数集R,没有上界和下界。

单调性

在特定的区间内,正弦函数和余弦函数可以是增函数或减函数。

正弦函数在[2kπ-π/2,2kπ+π/2](k∈Z)上是增函数,在[2kπ+π/2,2kπ+3π/2](k∈Z)上是减函数。

余弦函数在[2kπ-π,2kπ](k∈Z)上是增函数,在[2kπ,2kπ+π](k∈Z)上是减函数。

正切函数在其定义域内的某些区间内也是增函数或减函数。

正切函数在[kπ-π/2,kπ+π/2](k∈Z)上是增函数。

和差角公式

三角函数满足一些和差角公式,这些公式允许我们计算两个角的和或差的正弦、余弦和正切值。

倍角公式

三角函数也满足一些倍角公式,这些公式允许我们计算一个角的两倍的正弦、余弦和正切值。

三角恒等式

三角恒等式是一组恒真的等式,涉及正弦、余弦、正切等三角函数。这些恒等式在三角函数的计算和证明中非常有用。

单位圆上的定义

三角函数也可以定义为单位圆上的各种线段的长度,这为它们提供了几何解释。

三角函数知识点归纳总结

(1)α+2K兀(K∈Z)的诱导公式:

①cos(α+2K兀)=cosα

②sin(α+2K兀)=sinα

③tan(α+2K兀)=tanα

(2)-α的诱导公式:

①cos(-α)=cosα

②sin(-α)=-sinα

③tan(-α)=-tanα

证明:如图,若α的终边在第一象限,交单位圆于P点,作终边关于x轴的对称边,交单位圆O于P',则P'(cos(-α),sin(-α))。

所以,cos(-α)=cosα,sin(-α)=-sinα,tan(-α)=-tanα。

同理可得,任意非x轴角的终边与其相反角的终边一定是关于x轴对称的。当α的终边在x轴上时,公式成立。所以,cos(-α)=cosα,sin(-α)=-sinα,tan(-α)=-tanα(α在y轴上时,此值不存在)。

(3)兀±α的诱导公式:

①cos(α+兀)=-cosα

②sin(α+兀)=-sinα

③tan(α+兀)=tanα

证明:若α的终边在第一象限,延长终边起点交单位圆于P'’,则P''(-cosα,-sinα)(经过圆心的直线即为直径,其为P关于圆心的对称点),而直线PP''的角度为平角,所以优弧AOP''的圆心角即为α+兀。

所以,cos(α+兀)=-cosα,sin(α+兀)=-sinα,tan(α+兀)=tanα

同理可得,任意角α的终边与角α+兀的终边一定是关于原点对称的。

所以,cos(α+兀)=-cosα,sin(α+兀)=-sinα,tan(α+兀)=tanα(α在y轴上时,此值不存在)。

④cos(兀-α)=-cosα

⑤sin(兀-α)=sinα

⑥tan(兀-α)=-tanα

证明:若α的终边在第一象限,延长角-α的终边交单位圆O于P''', 因为OP'为角-α的终边,所以OP'''为角-α的终边,P'''(-cos(-α),-sin(-α))=(-cosα,sinα)。

同理可得,任意非y轴角α的终边与角-α的终边一定是关于y轴对称的。当α的终边在y轴上时,tanα不存在。

所以,cos(兀-α)=-cosα,sin(兀-α)=sinα,tan(兀-α)=-tanα(α在y轴上时,此值不存在)

智选大学

736分大学730分大学715分大学704分大学700分大学699分大学697分大学696分大学695分大学694分大学692分大学691分大学690分大学689分大学688分大学687分大学686分大学685分大学684分大学683分大学682分大学681分大学680分大学679分大学678分大学677分大学676分大学675分大学674分大学673分大学672分大学671分大学670分大学669分大学668分大学667分大学666分大学665分大学664分大学663分大学662分大学661分大学660分大学659分大学658分大学657分大学656分大学655分大学654分大学653分大学652分大学651分大学650分大学649分大学648分大学647分大学646分大学645分大学644分大学643分大学642分大学641分大学640分大学639分大学638分大学637分大学636分大学635分大学634分大学633分大学632分大学631分大学630分大学629分大学628分大学627分大学626分大学625分大学624分大学623分大学622分大学621分大学620分大学619分大学618分大学617分大学616分大学615分大学614分大学613分大学612分大学611分大学610分大学609分大学608分大学607分大学606分大学605分大学604分大学603分大学602分大学601分大学600分大学599分大学598分大学597分大学596分大学595分大学594分大学593分大学592分大学591分大学590分大学589分大学588分大学587分大学586分大学585分大学584分大学583分大学582分大学581分大学580分大学579分大学578分大学577分大学576分大学575分大学574分大学573分大学572分大学571分大学570分大学569分大学568分大学567分大学566分大学565分大学564分大学563分大学562分大学561分大学560分大学559分大学558分大学557分大学556分大学555分大学554分大学553分大学552分大学551分大学550分大学549分大学548分大学547分大学546分大学545分大学544分大学543分大学542分大学541分大学540分大学539分大学538分大学537分大学536分大学535分大学534分大学533分大学532分大学531分大学530分大学529分大学528分大学527分大学526分大学525分大学524分大学523分大学522分大学521分大学520分大学519分大学518分大学517分大学516分大学515分大学514分大学513分大学512分大学511分大学510分大学509分大学508分大学507分大学506分大学505分大学504分大学503分大学502分大学501分大学500分大学499分大学498分大学497分大学496分大学495分大学494分大学493分大学492分大学491分大学490分大学489分大学488分大学487分大学486分大学485分大学484分大学483分大学482分大学481分大学480分大学479分大学478分大学477分大学476分大学475分大学474分大学473分大学472分大学471分大学470分大学469分大学468分大学467分大学466分大学465分大学464分大学463分大学462分大学461分大学460分大学459分大学458分大学457分大学456分大学455分大学454分大学453分大学452分大学451分大学450分大学449分大学448分大学447分大学446分大学445分大学444分大学443分大学442分大学441分大学440分大学439分大学438分大学437分大学436分大学435分大学434分大学433分大学432分大学431分大学430分大学429分大学428分大学427分大学426分大学425分大学424分大学423分大学422分大学421分大学420分大学419分大学418分大学417分大学416分大学415分大学414分大学413分大学412分大学411分大学410分大学409分大学408分大学407分大学406分大学405分大学404分大学403分大学402分大学401分大学400分大学399分大学398分大学397分大学396分大学395分大学394分大学393分大学392分大学391分大学390分大学389分大学388分大学387分大学386分大学385分大学384分大学383分大学382分大学381分大学380分大学379分大学378分大学377分大学376分大学375分大学374分大学373分大学372分大学371分大学370分大学369分大学368分大学367分大学366分大学365分大学364分大学363分大学362分大学361分大学360分大学359分大学358分大学357分大学356分大学355分大学354分大学353分大学352分大学351分大学350分大学349分大学348分大学347分大学346分大学345分大学344分大学343分大学342分大学341分大学340分大学339分大学338分大学337分大学336分大学335分大学334分大学333分大学332分大学331分大学330分大学329分大学328分大学327分大学326分大学325分大学324分大学323分大学322分大学321分大学320分大学319分大学318分大学317分大学316分大学315分大学314分大学313分大学312分大学311分大学310分大学309分大学308分大学307分大学306分大学305分大学304分大学303分大学302分大学301分大学300分大学299分大学298分大学297分大学296分大学295分大学294分大学293分大学292分大学291分大学290分大学289分大学288分大学287分大学286分大学285分大学284分大学283分大学282分大学281分大学280分大学279分大学278分大学277分大学276分大学275分大学274分大学273分大学272分大学271分大学270分大学269分大学268分大学267分大学266分大学265分大学264分大学263分大学262分大学261分大学260分大学259分大学258分大学257分大学256分大学255分大学254分大学253分大学252分大学251分大学250分大学249分大学248分大学247分大学246分大学245分大学244分大学243分大学242分大学241分大学240分大学239分大学238分大学237分大学236分大学235分大学234分大学233分大学232分大学231分大学230分大学229分大学228分大学227分大学226分大学225分大学224分大学223分大学222分大学221分大学220分大学219分大学218分大学217分大学216分大学215分大学214分大学213分大学212分大学211分大学210分大学209分大学208分大学207分大学206分大学205分大学204分大学203分大学202分大学201分大学200分大学199分大学198分大学197分大学196分大学195分大学194分大学193分大学192分大学191分大学190分大学189分大学188分大学187分大学186分大学185分大学184分大学183分大学182分大学181分大学180分大学179分大学178分大学177分大学176分大学175分大学174分大学173分大学172分大学171分大学170分大学169分大学168分大学167分大学166分大学165分大学164分大学163分大学162分大学161分大学160分大学159分大学158分大学157分大学156分大学155分大学154分大学153分大学152分大学151分大学150分大学