高考数学考试技巧首先要看清审题与解题。有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。
高考数学考试有什么技巧
要做到从容应对高考,加强应试能力素养的训练和培养是必不可少的。因此,要把每一次的阶段性检测当作高考的模拟训练,除在数学智力方面考查自己外,还应在非数学智力方面考查自己,如应变能力,考试心理,解题和书写速度等。只有这样,才能在高考进从容应付,考出较高的水平。
强化解题规范:所谓“三基”,就是指基础知识,基本技能和基本数学思想方法。“三基”是历年高考的基调之一,复习时要抓住“三基”不放。 在此基础上,注意各个独立知识点是的内在“联系”与“综合”,形成知识网络。高考题常常是在各个知识的交叉点上设计的。做到既常抓不懈,又常抓常新;既“各个击破”,又“融会贯通”;既熟练掌握,又灵活运用。在注意常规解法的同时,又注意研究特色解题,做到既掌握解题的“大法”、“通法”,又研究其“小法”、“特法”,多方考虑,纵横联系,从不同角度审视问题,以创新的意识指导解决数学问题。
数学高考题,即使是基础题,也有一定程度的灵活性和综合性。“逻辑性强,综合性高,解题要求严”是高考题的三个基本特点。所以在高考复习乃至高一高二的日常数学学习中,都应重视对基本数学素养的训练。如运算过程应尽量“一次成功”;强调正确表达过程,解题过程应严密规范;不重复不遗漏,精确读题,细致审题;立体几何(每年高考一般在20分左右,且必有一道解答题)的“一作二证三算”解题技巧;准确书写答案,不在解题规范上失分;镇静应试,讲究速度等等,都需要在日常学习中强化训练,形成习惯。
高考数学答题技巧
三角变换与三角函数的性质问题
1、解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
2、构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。