圆周率不是某一个人发明的,而是在历史的进程中,不同的数学家经过无数次的演算得出的。古希腊大数学家阿基米德开创了人类历史上通过理论计算圆周率近似值的先河。数学家祖冲之进一步得出精确到小数点后7位的结果。
圆周率的发明者
圆周率不是某一个人发明的,而是在历史的进程中,不同的数学家经过无数次的演算得出的。
古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。
公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值。
圆周率的历史发展
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16/9的平方,约等于3.1605。埃及人似乎在更早的时候就知道圆周率了。
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。
分析法时期:这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。第一个快速算法由英国数学家梅钦提出,1706年梅钦计算π值突破100位小数大关。